

2. Bürgerinformationsveranstaltung am 05.11.2025 Festhalle Dudenhofen





## Was ist kommunale Wärmeplanung?

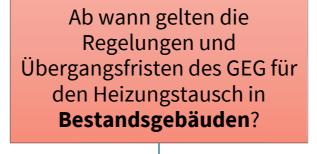
**Ziel:** Nachhaltige, effiziente und treibhausgasneutrale Wärmeversorgung in der Verbandsgemeinde Römerberg-Dudenhofen gewährleisten bis 2040



#### Orientierungshilfe für die Wärmeversorgung (Möglichkeiten)

- Wo sind Wärmenetz möglich? (Ortsteile, Quartiere)
- Ist mein Haus in einem potenziellen Wärmenetz oder Wasserstoffnetz Gebiet?




#### Strategisches Instrument der Kommune

KWP hilft bei Koordination von Infrastrukturmaßnahmen, Nutzung Synergien bei Bau- und Sanierungsmaßnahmen



## Kommunale Wärmeplanung (KWP)

Gesetzliche Wechselwirkungen: WPG und GEG



Je nachdem, was zuerst eintritt:

Regelungen und Übergangsfristen des GEG für den Heizungstausch in **Bestandsgebäuden** beginnen nicht automatisch mit der Fertigstellung der KWP!

Kommunen < 100.000 Einwohner: ab dem 01.07.2028

ODER

Wärmeversorgungsgebiet im Ortsgemeinderat ausgewiesen (§ 71 Abs. 8 GEG)

→ Maßnahme Nr.4 (ca. 2027-2029)



### Ablauf der KWP

#### 1. Bestandsanalyse

Bewertung des aktuellen Wärmebedarfs und Wärmeversorgung



#### 2. Potenzialanalyse

Identifizierung von Wärmeerzeugungspotenzialen



#### 3. Zielszenario 2040

Einteilung in voraussichtliche Wärmeversorgungsgebiete, Entwicklung einer Vision für die Wärmeversorgung der Zukunft

#### 4. Umsetzungsstrategie

Planung der Schritte zur Erreichung des Zielszenarios, entwickeln von Maßnahmen

2. Bürgerinformationsveranstaltung



### Bildhafter Vergleich

- Wärmeendenergiebedarf VGRD sind 293 GWh/a
  - 61% Anteil Erdgas, 36% Anteil Heizöl
  - 97% Fossil



Energie wie 3.300 Tanklastzüge = Eine Kolonne Tanklaster rund 36 km lang ca. von Römerberg nach Heidelberg



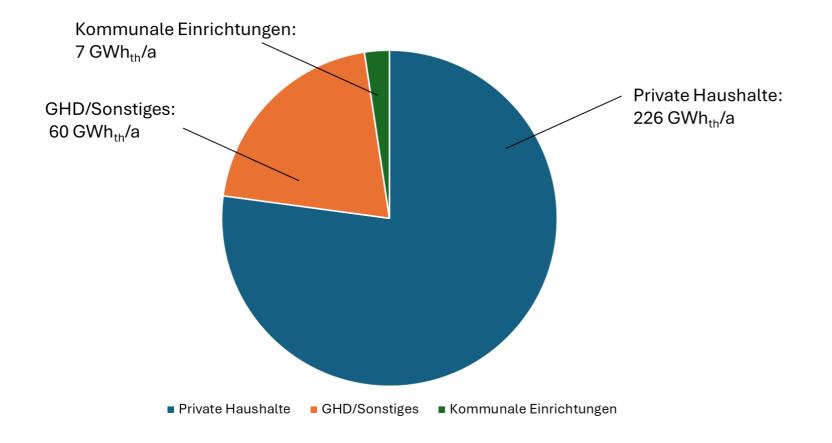
Energie wie 15 Fußballfelder voll bedeckt mit einem Meter Höhe an Holzpellets (ca. 58.000 Tonnen).



#### Bildhafter Vergleich

Treibhausgasemissionen bezogen auf die Wärme der VGRD sind 77.657 t CO<sub>2</sub>/a




Die CO2-Menge entspricht etwa 22.000 Passagieren, die einmal Hin- und wieder zurück fliegen von Frankfurt nach New York



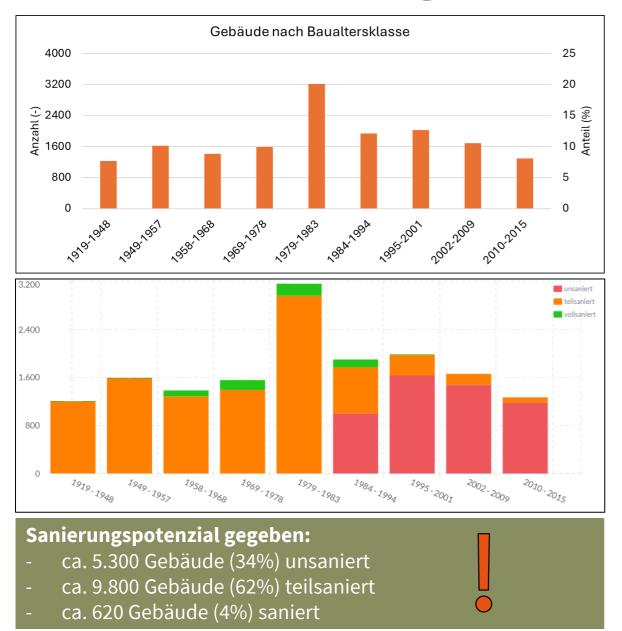
Zur Kompensation müssten etwa 6.000 Hektar Wald ein Jahr lang wachsen = eine Fläche von 8.400 Fußballfelder

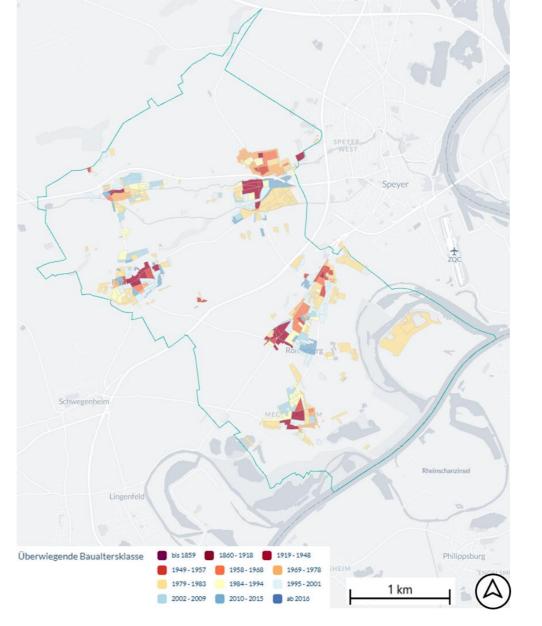


#### Wärmeverbrauchsgruppen



Ca. 77 % des Wärmebedarfs entfallen in der VGRD auf die privaten Haushalte


Zum Vergleich: "In Deutschland entfallen durchschnittlich etwa 50 % des Wärmebedarfs auf private Haushalte


#### Fazit: Die Gemeinde ist Einfamilienhaus geprägt.

"Die Wärmewende in der VGRD entscheidet sich in Ihren Häusern, Ihren Kellern und auf Ihren Dächern."



### **Baualtersstruktur / Sanierungsstand**







# Ergebnisauszug Potenzialanalyse



|     | Potenzial                  | Quantifizierung                                                                                                            |  |  |
|-----|----------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|
|     | Sanierungspotenzial        | 210,1 GWh <sub>th</sub> /a                                                                                                 |  |  |
|     | Biogas                     | 5,4 GWh <sub>th</sub> /a (freie Grünflächen)                                                                               |  |  |
|     |                            | 38,2 GWh <sub>th</sub> /a (gesamt)                                                                                         |  |  |
|     | Grünschnittverwertung      | 2,4 – 6,3 GWh <sub>th</sub> /a                                                                                             |  |  |
|     | Holzhackschnitzel          | -                                                                                                                          |  |  |
|     | Erdwärmekollektoren        | $1~\mbox{GWh}_{\mbox{\scriptsize th}}/\mbox{a}$ bei 2.000 Volllaststunden pro Jahr und einer Fläche von 8.872 $\mbox{m}^2$ |  |  |
|     | Erdwärmesonden             | $1~{\rm GWh_{th}/a}$ bei 2.000 Volllaststunden pro Jahr  und einer Fläche von 2.400 ${\rm m^2}$                            |  |  |
| 福   | Grundwasser                | 1 GWh <sub>th</sub> /a bei 2.000 Volllaststunden pro Jahr und einer<br>Fördermenge von 51,8 m³/h                           |  |  |
|     | Solarthermie (Dachflächen) | 664 GWh <sub>th</sub> /a (Gesamt)                                                                                          |  |  |
|     |                            | 29 – 86 GWh <sub>th</sub> /a (nutzbar)                                                                                     |  |  |
|     | Solarthermie (Freifläche)  | 1.040 GWh <sub>th</sub> /a (Gesamt)                                                                                        |  |  |
|     |                            | 29 – 86 GWh <sub>th</sub> /a (nutzbar)                                                                                     |  |  |
|     | Tiefengeothermie           | Zurzeit nicht quantifizierbar                                                                                              |  |  |
|     | Abwasser                   | 5,3 GWh <sub>th</sub> /a                                                                                                   |  |  |
|     |                            | 1,9 GWh <sub>th</sub> /a                                                                                                   |  |  |
|     |                            | 2,9 GWh <sub>th</sub> /a                                                                                                   |  |  |
|     | Industrielle Abwärme       | -                                                                                                                          |  |  |
|     | Luftwärmepumpe             | < 288 GWh <sub>th</sub> /a                                                                                                 |  |  |
|     | Flusswasserwärmepumpe      | Nicht quantifiziert                                                                                                        |  |  |
|     | Wasserwerk - Wärmepumpe    | 2,4 GWh <sub>th</sub> /a                                                                                                   |  |  |
| Sci | Wasserstoff                | Nicht quantifizierbar                                                                                                      |  |  |
|     | PV-Dachfläche              | 184 GWh <sub>el</sub> /a                                                                                                   |  |  |
|     | PV- freie Grünfläche       | 448 GWh <sub>el</sub> /a                                                                                                   |  |  |
|     | Windkraft                  | Nicht quantifizierbar                                                                                                      |  |  |
|     | Wasserkraft                | -                                                                                                                          |  |  |



### Ablauf der KWP

#### 1. Bestandsanalyse

Bewertung des aktuellen Wärmebedarfs und Wärmeversorgung



### 2. Potenzialanalyse

Identifizierung von Wärmeerzeugungspotenzialen



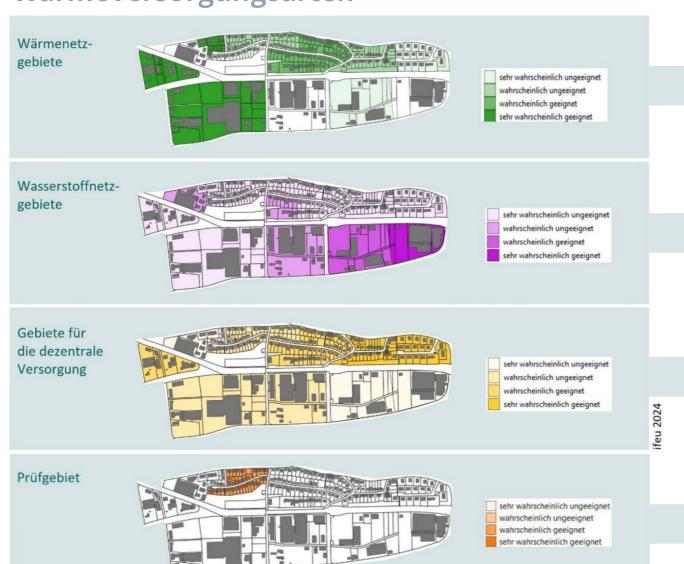
#### 3. Zielszenario 2040

Einteilung in voraussichtliche Wärmeversorgungsgebiete, Entwicklung einer Vision für die Wärmeversorgung der Zukunft

#### 4. Umsetzungsstrategie

Planung der Schritte zur Erreichung des Zielszenarios, entwickeln von Maßnahmen

1. Bürgerinformationsveranstaltung


2. Bürgerinformationsveranstaltung



# Voraussichtliche Wärmeversorgungsgebiete

#### Wärmeversorgungsarten

Quelle: Leitfaden Wärmeplanung des BMWK & BMWSB



Für Wärmenetz geeignet. Start mit Potenzialstudie oder Machbarkeitsstudie (BEW)

Voraussetzung: Verbindlicher Fahrplan des Netzbetreibers bei der Bundesnetzagentur

Individuelle Wärmeversorgung

Umstände noch nicht ausreichend bekannt



# Voraussichtliche Wärmeversorgungsgebiete

Wesentliche Methodik

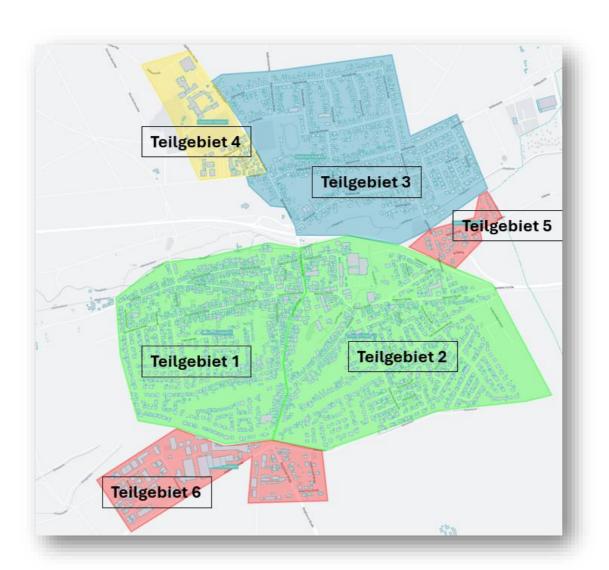
#### **Einteilung in Teilgebiete:**

- Wärmeliniendichte
- Ankerkunden
- Wärmeerzeugungspotenziale

## Bewertung des Teilgebiets in den Kategorien:

- QualitativeWärmegestehungskosten
- Realisierungsrisiko und Versorgungssicherheit
- Kumulierte Treibhausgasbilanz

Vorschläge durch Netzbetreiber / Energiedienstleister Einteilung in voraussichtliche Wärmeversorgungsgebiete



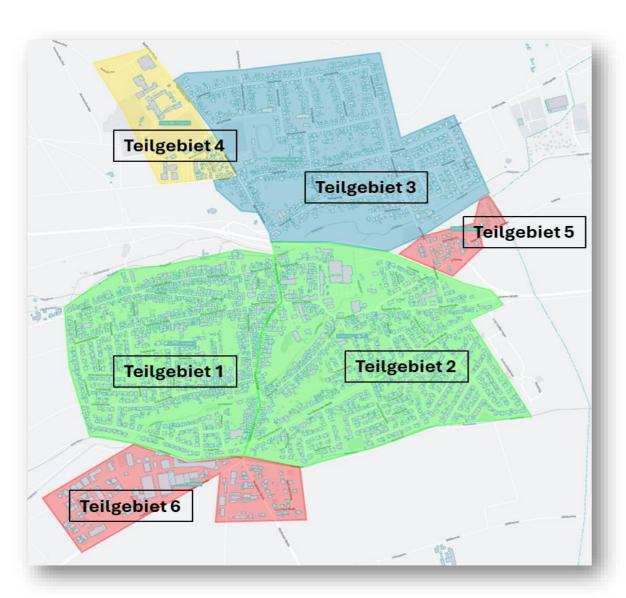

# Voraussichtliche Wärmeversorgungsgebiete

### Erklärung am Beispiel Dudenhofen

Gebiet mit vorhandenem Wärmenetz/Gebäudenetz

Gebiete mit geringer Eignung für ein Wärmenetz




Gebiete mit mittlerer Eignung für ein Wärmenetz

Gebiete mit hoher Eignung für ein Wärmenetz



### Dudenhofen

#### Teilgebiete



#### Teilgebiet 1-3: Prüfgebiet

- Straßenzüge mit hoher Wärmeliniendichte vorhanden, jedoch zu wenig erschließbare Potenziale
- Prüfung von Potenzial-Tiefengeothermie

#### Teilgebiet 4: Wärmenetzgebiet

- Mittlere Wärmedichte
- Vorhandenes Gebäudenetz
- Wärmepumpe-Wasserwerk
- Oberflächennahe Geothermie

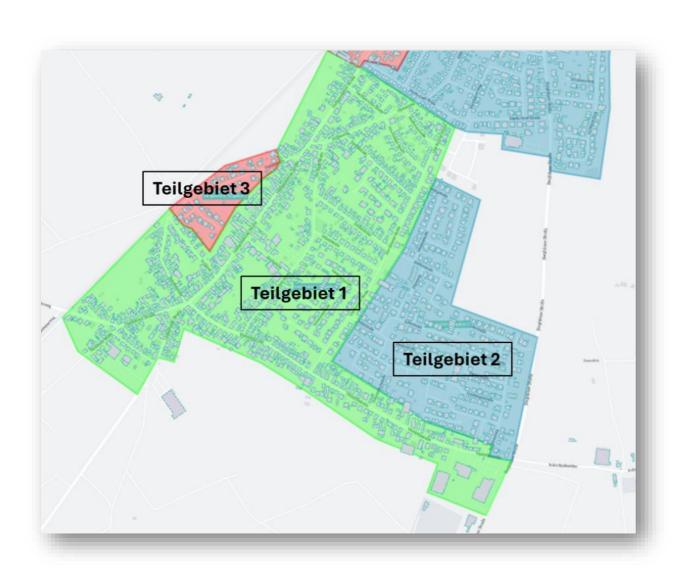
→ Fokusgebiet



## Berghausen

### **Teilgebiete**




#### Teilgebiet 1-2: Prüfgebiet

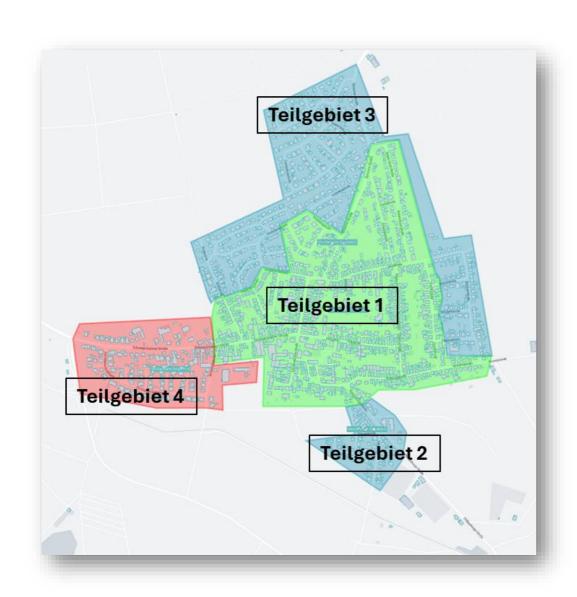
- Straßenzüge mit hoher Wärmeliniendichte vorhanden, jedoch zu wenig erschließbare Potenziale
- Prüfung von Potenzial-Tiefengeothermie



# Heiligenstein

### Teilgebiete




#### Teilgebiet 1: Prüfgebiet

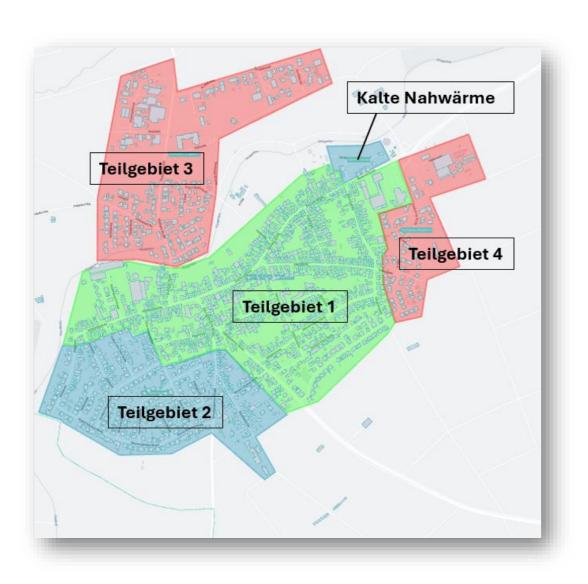
- Straßenzüge mit hoher Wärmeliniendichte vorhanden, jedoch zu wenig erschließbare Potenziale
- Prüfung von Potenzial-Tiefengeothermie



## Mechtersheim

### Teilgebiete




#### Teilgebiet 1-2: Prüfgebiet

- Straßenzüge mit hoher Wärmeliniendichte vorhanden
- Prüfung von Potenzial-Tiefengeothermie
- Prüfung Klarwasser-Wärmepumpe und/oder Flusswasser-Wärmepumpe

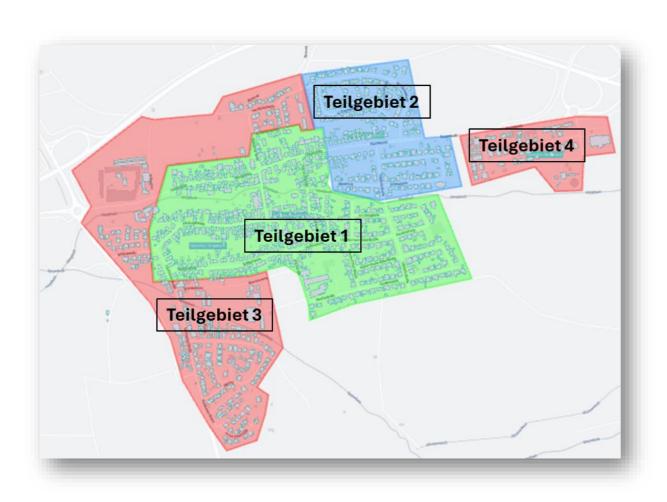


### Harthausen

### Teilgebiete



#### Teilgebiet 1: Prüfgebiet


 Straßenzüge mit hoher Wärmeliniendichte vorhanden, jedoch zu wenig erschließbare Potenziale

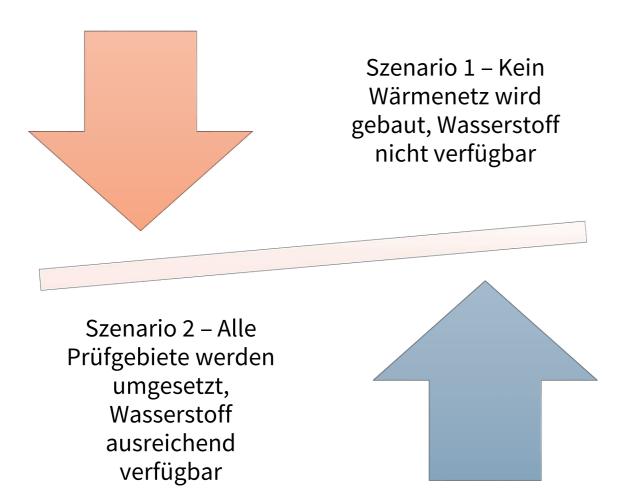
- Prüfung Ausbaus kalte Nahwärme mit Potenzialen:
  - Abwasserwärmetauscher
  - Erdwärmesonden
- → Fokusgebiet



### Hanhofen

#### Teilgebiete




- Straßenzüge mit hoher Wärmeliniendichte vorhanden, jedoch zu wenig erschließbare Potenziale
- Pfalzgas: Umbau des Gasnetzes bis 2035 auf wasserstofffähig angestrebt
  - → Jedoch kein verbindlicher Fahrplan
  - "Legt der Betreiber eines bestehenden Gasverteilernetzes […] einen Vorschlag für eine Versorgung des beplanten Teilgebiets über ein Wasserstoffnetz vor, stellt er sicher, dass der Vorschlag im Einklang mit einem vorliegenden oder in Erstellung befindlichen verbindlichen Fahrplan im Sinne von § 71k Absatz 1 Nummer 2 des Gebäudeenergiegesetzes steht." § 18 Abs. (4) WPG
- → Gesamte Ortsgemeinde ist Prüfgebiet für Wasserstoffnetzgebiet

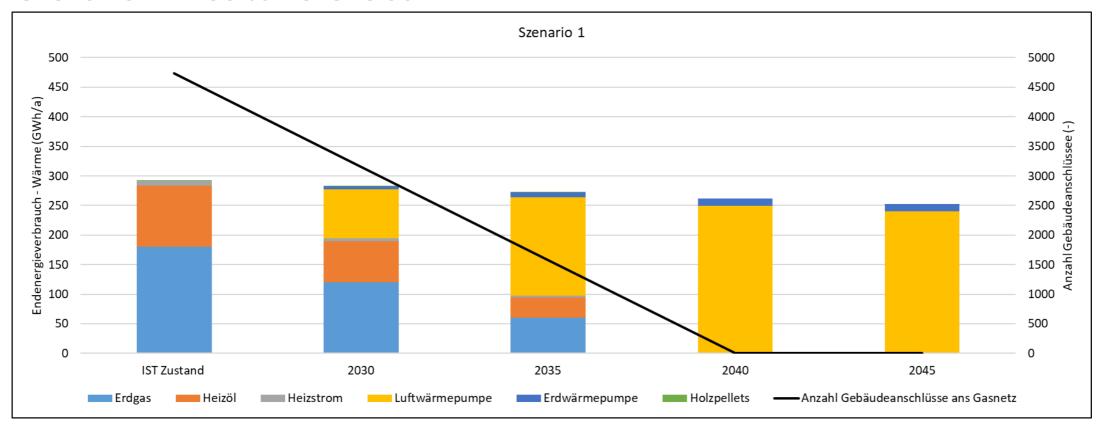


## Zielszenario

#### Zwei Extremfälle

### Eine Einteilung in Prüfgebiete erlaubt keine genaue Darstellung eines Zielszenarios



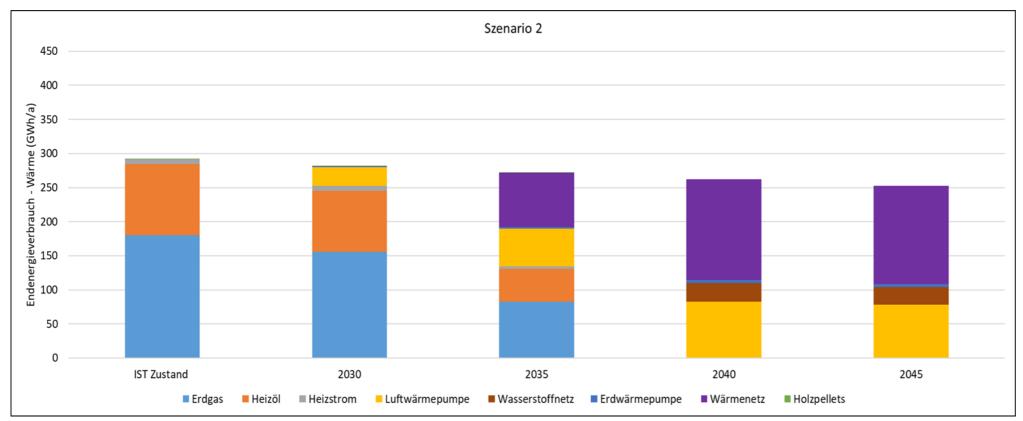

#### Gilt für beide Szenarien:

- Annahme Keine fossile Energien mehr ab 2040
- Solarthermie, Biomasse, direktelektrische Erzeugung in Betrachtung ausgeklammert, jedoch möglich
- Sanierungsrate von 1 %
  - → Wärmeendenergieverbrauch sinkt



## Zielszenario

#### Szenario 1 – 100 % Dezentral

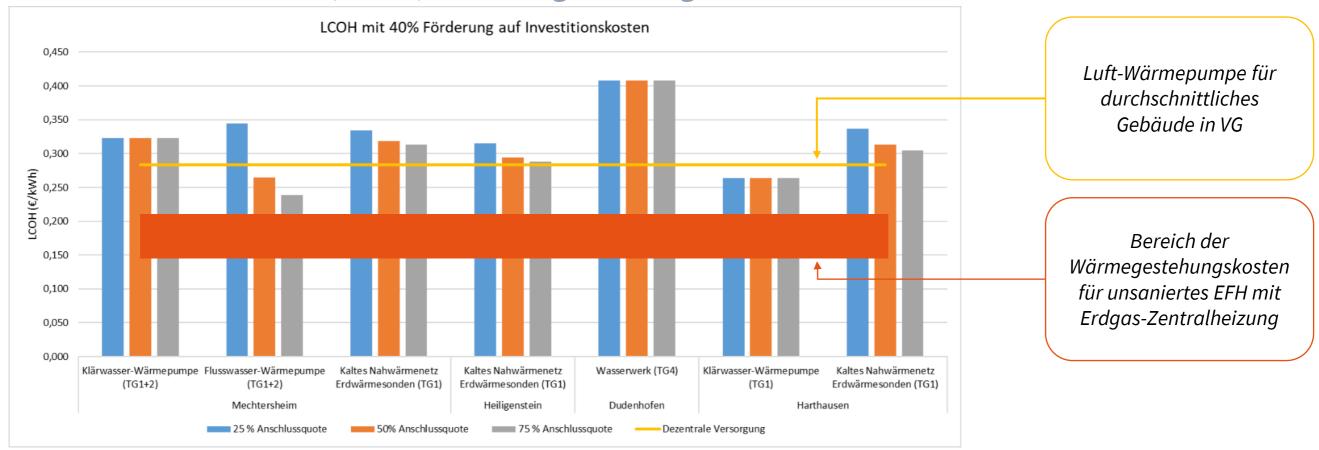



- Versorgung der gesamten VG über dezentrale Einzellösungen
- 95 % Luft-Wärmepumpen und 5 % Erdwärmepumpen



## Zielszenario

#### Szenario 2 – Wärmenetz und Wasserstoff




- Anteil an Wärmenetzen steigt ab 2035 (längere Bauzeiten)
- Wasserstoff für Hanhofen ab 2040 verfügbar (Annahme: 70 % Anschlussquote)



## Kostenprognose

### Levelized Cost of Heat (LCOH) - Wärmegestehungskosten



- Berechnung basiert auf vielen Annahmen und Abschätzungen
  - U. a.: Leitungslänge, Verlegungskosten, Anlagenkosten, Förderquoten, Sanierungsrate, Netzverluste, aktuelle Energiepreise...
- Kleine Potenziale und kalte Nahwärme im Kostennachteil
- Anschlussquote mit großen Auswirkungen auf Kosten (und auf Realisierbarkeit)
- Keine Endkundenpreise

23



# Umsetzungsstrategie

### Teilschritte je Prüfgebiet

| Nr. | Beschreibung                                            | Start                                                                   |
|-----|---------------------------------------------------------|-------------------------------------------------------------------------|
| 1.  | Anschlussbereitschaft ermitteln                         | 2026                                                                    |
| 2.  | Klärung der Abhängigkeiten von Akteuren in Prüfgebieten | Ab 2026                                                                 |
| 3.  | Potenzialstudie Wärmenetz-Eignung                       | 2026 – 2027 für Fokusgebiete<br>anschließend für weitere<br>Teilgebiete |
| 4.  | Gebietsausweisung beschließen (§ 71 Abs. 8 GEG)         | 2027 - 2029                                                             |
| 5.  | Start BEW-Förderprogramm: Machbarkeitsstudie            | Ab 2028                                                                 |

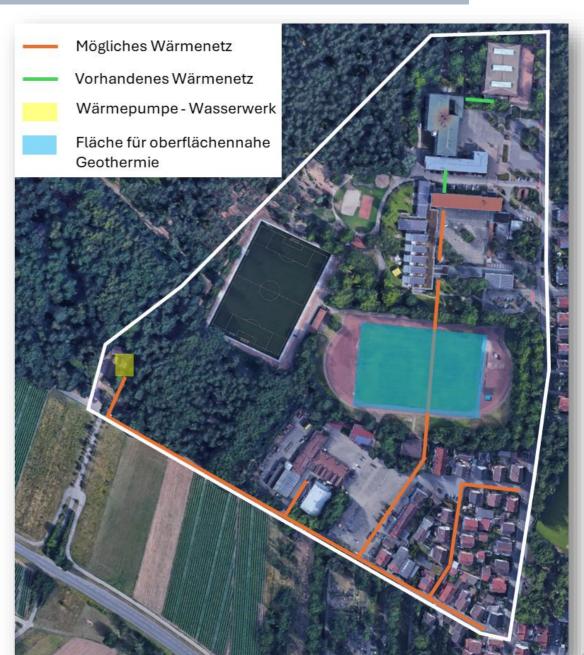


## Fokusgebiete

#### Harthausen – Erweiterung kalte Nahwärme

- IST-Wärmebedarf 7,3 GWh/a
- Lokale Potenziale:
  - Abwasser-Wärmetauscher ca. 2,9 GWh/a (ohne Wärmepumpe)
  - Ausbau Erdwärmesonden
- Vorteil: Vorhandenes kaltes Nahwärmenetz




- Wärmegestehungskosten-Prognose: Wärmenetz teurer als dezentrale Versorgung
  - Synergien finden (z. B. Tiefbau)
  - Maßnahmen zur Kostenreduktion finden
  - Wärmegestehungskosten in Potenzialstudie (Maßnahme Nr. 3) detaillierter untersuchen



## Fokusgebiete

### **Dudenhofen – Erweiterung des Gebäudenetzes**

- IST-Wärmebedarf 3,4 GWh/a
- Lokale Potenziale:
  - Wärmepumpe-Wasserwerk ca. 2,4 GWh/a
  - Sportplatz Oberflächennahe Geothermie
- Vorteil: Vorhandenes Gebäudenetz
- Wärmegestehungskosten-Prognose: Wärmenetz teurer als dezentrale Versorgung
  - Synergien finden (z. B. Tiefbau)
  - Maßnahmen zur Kostenreduktion finden
  - Wärmegestehungskosten in Potenzialstudie (Maßnahme Nr. 3) detaillierter untersuchen





# Zusammenfassung – Wärmeplanung

- Heute: Wärmeplan fertiggestellt
- Bis 30.6.2028: Frist für Wärmeplanung wurde eingehalten
- Wärmeplan: Klarheit über Wärmebedarf, Erzeugungs- und Einsparpotenziale und Umsetzungsstrategie
- Nach Beschluss Gebietsausweisung: 65 %-Regelung greift (1 Monat nach Bekanntgabe)
- Bestehende Heizungen: Dürfen weiterlaufen, keine Austauschpflicht vor dem 01.07.2028 oder Gebietsausweisung





### Fazit – Wärmewende



- Dekarbonisierte Wärmelösungen haben nach heutigem Stand – tendenziell ein etwas höheres Preislevel als fossile Wärmelösungen
- 2. Die Investition in regionale, erneuerbare Strukturen sichert unsere Versorgung auch in Krisenzeiten.
- 3. Lokale Wärmewende bringt kommunale Wertschöpfung, regionale Unabhängigkeit und Umweltverträglichkeit ("Geld bleibt in der Region")

"Mit der kommunalen Wärmeplanung bringen wir diese drei Ziele in Einklang: Wir setzen auf lokale, erneuerbare Energien (Klimaschutz), bauen robuste Strukturen auf (Versorgungssicherheit) und nutzen Fördermittel sowie langfristig stabile Preise (Bezahlbarkeit)."



für Ihre Aufmerksamkeit



Wir übernehmen Verantwortung für Menschen, Technik und Projekte!